60 Minutes-60 Questions

DIRECTIONS: Solve each problem, choose the correct answer, and then fill in the corresponding oval on your answer document.

Do not linger over problems that take too much time. Solve as many as you can; then return to the others in the time you have left for this test.

You are permitted to use a calculator on this test. You may use your calculator for any problems you choose, but some of the problems may best be done without using a calculator.

Note: Unless otherwise stated, all of the following should be assumed.

1. Illustrative figures are NOT necessarily drawn to scale.

- 2. Geometric figures lie in a plane.
- 3. The word line indicates a straight line.
- 4. The word average indicates arithmetic mean.

A	If $r=7$, $b=4$, and $g=-8$, what does $(r+b-g)(b+g)$ equal? DO YOUR FIGURING HERE. A. -76 B. -12 C. 12 D. 15 E. 76 $(7+4-(-8)(4+(-8))=(19)(-4)=-76$
H	Tasha's regular pay is \$12.00 per hour for a 40-hour workweek. For each hour over 40 hours she works in a Real Lift Problem Solving week, she is paid $1\frac{1}{2}$ times her regular hourly pay. How much is Tasha paid for a week in which she works 49 hours? F. \$588.00 G. \$601.50 H. \$642.00 J. \$661.50 K. \$882.00 H. \$882.00 F. \$882.00 H. \$642.00 J. \$661.50 J. \$661.50 J. \$661.50 J. \$661.50 J. \$661.50
B	To attend the Press Club Annual Banquet, members pay \$40 per ticket, while nonmembers pay \$50 per ticket. What is the revenue, in dollars, from the tickets when 100 member tickets and n nonmember tickets are purchased? A. $n+100$ B. $50n+40(100)$ C. $50(n+100)$ D. $50(n+40)$ E. $(50+40)n$ A $40(100)$ Frickets and n prickets are purchased? 100 Problem $100 \text$
_ I	How many integers between 9 and 59 can be divided Easiest Way is just by 5 with a remainder of zero? F. 9 G. 10 H. 11 J. 12 Detween 9 and 59 and then Count them (Count them) (Besample 19,15, 20,25,30,35,40,504,55 There are ten of them

10. Which of the following calculations gives the area, in square centimeters, of the square below, with sides Area of Squar 8 centimeters long? F. 8 + 8S= 8 easy as it is. G. 8 + 8 + 8 + 88 8 J. 8 · 8 · 8 · 8 K. 88 and Proportion 11. A recipe for 1 loaf of bread calls for $3\frac{3}{4}$ cups of flour. What is the maximum number of such loaves that can be made with a bag of flour that contains $12\frac{3}{8}$ cups of X= 123/8 = 33/4 flour? X loaves = 12,375 + 3.75 = 3.3 В. C. D. 15 Multiplying binomials 12. The expression (3c - 2d)(2c + d) is equivalent to: **F.** $6c^2 - 7cd - 2d^2$ (3c)(d) - (2d)(2c)**G.** $6c^2 - 7cd + 2d^2$ **H.** $6c^2 - cd - 2d^2$ **J.** $6c^2 - cd + 2d^2$ $=6c^2 + 3cd - 4dc - 2d^2 = 1$ **K.** $6c^2 - 2d^2$ 13. Eight points with integer coordinates are plotted in the Geometry Coordinate standard (x,y) coordinate plane below. Which of the plotted points has an x-coordinate less than 1 and a y-coordinate of at least 2? D_{\bullet} B. B C. C $\mathbf{D}.$ DE. 14. When George fell asleep one night, the temperature was 28° Fahrenheit. When George awoke the next morning, the temperature was -15° Fahrenheit. Which of the following, where + denotes a rise in temperature and - denotes a drop in temperature, best illustrates the temperature change from the time George fell asleep until the time he awoke?

Since there's a drop temperature then

GO ON TO THE NEXT PAGE.

F. −43°F **G.** −13°F **H.** −7°F

J.

ACT-61B-SAMPLE

+13°F

+43°F

Means

15. Which of the following is equivalent to $(a^6)^{24}$?

DO YOUR FIGURING HERE. Rules of exponents

$$E \quad \begin{array}{c} \mathbf{B.} \quad a^4 \\ \mathbf{C.} \quad a^{11} \end{array}$$

$$(\chi^a)^b = \chi^{ab}$$

→ E. a^{144}

16. Ohm's law for electricity is $I = \frac{E}{R}$, where I is the current flow in amperes, E is the number of volts, and R is the number of ohms of resistance. A technician has a circuit with a resistance of 34 ohms and a current flow of 7 amperes. Which of the following expressions gives the number of volts for this circuit?

Plugging Values into given formulas

F. 34 + 7

*7 = E * 34

J.
$$\frac{7}{34}$$

K.

17. In the figure below, $\overline{AC} \parallel \overline{DF}$, $\triangle EBF$ is isosceles with $\overline{EB} \cong \overline{FB}$, and $\angle CBF$ measures 35°. What is the measure of $\angle DEB$?

Parallel Lines . 1505celes triangles

A. $107\frac{1}{2}$ ° B. 110°

SINCE DEBF 10 isosceles LBEF = LBFE.

C. 125°

■ E. 145°

13 + LBEF = 180°

4? + 35°= 180°

18. A sequence of 5 numbers has 6 as its first term and 32 as its last term. The first 3 numbers are an arithmetic sequence. The last 3 numbers are a geometric sequence with a common ratio of 2. What is the common difference among the first 3 terms?

ArithAletic > Common difference Geometric -> common

F.	0	
~	1	
3.	1	
T	61	

J. 67 K. 72

53

19. Water in Lake Forman is frozen at Celsius temperatures at or below 0° . Which of the following expressions represents all the Celsius temperatures, T, at which water is frozen in Lake Forman?

Inequalities

A. T=0 $\mathbf{B.} \quad T > 0$

at or below Means less than or equal. USE

17

5

25. In the figure below, the interior of a square with 5-inch sides is partitioned into smaller squares with 1-inch sides. The interior of the small square at the center of the figure and the interiors of all of the small squares that share at least 1 side with the large square are shaded. What percent of the interior of the large square is shaded?

DO YOUR FIGURING HERE. Area of Polygons Dercen

A. 17% B. 50%

C. $66\frac{2}{3}\%$

E. 84%

D. 68%

26. A researcher observed the growth of a certain colony of bacteria and recorded the data shown below.

Day	1	2	3	4	5
Number of cells in the colony	100	295	898	2,705	8,194

Exponential growth and finding formula for Series n = Number of days

For the days observed, which of the following expressions best approximates the number of cells in the colony on the nth day?

F. 100n - DOESN'T Work for Day Z

G. 300n - Doesn't work for Day 1 H. 300.3" - DOESN'T WORK for DAY 1

J. 100·3n-1 - Works

K. 300·3n-1 - Doesn't work for Box1

27. Smiley the Clown charges \$10 for scheduling a party and \$5 per hour after arriving at the party. Happy the Clown charges \$10 per hour for a party but does not have a charge for scheduling a party. The graph below shows the 2 clowns' wages, with h as the number of hours worked for a party. For what range of hours worked for a party does Happy the Clown make as much or more than Smiley the Clown?

graph interpretation given some real life SCENAVIO

After 2 hours HAPPY Makes MORE

E. There is no range for which Happy the Clown will make as much or more than Smiley the Clown.

28. Which of the following is an equation of the line that DO YOUR FIGURING HERE. passes through the points (1,-2) and (4,7) in the stan-SIOPE dard (x,y) coordinate plane?

J.
$$y = \frac{5}{3}x + \frac{1}{3}$$
 are different So

K.
$$y = \frac{1}{3}x + \frac{17}{3}$$
 if You find Slope, you have
In the figure below, A, C, and E are collinear; $\triangle ABC$ and $\triangle ADC$ are as shown; and angle measures are as

F.
$$5\pi$$
G. 10π
H. 20π
 $C = DT$

 25π 100π

A. 28 by 40

$$C = 10D$$

because
 $D = 10$

31. A day care center has 160 feet of fence that was donated to construct a fence around a play area. The area is to be rectangular with its length 12 feet longer than its width. Assuming all of the fence is used, what will be the approximate dimensions, in feet, of the play area?

of rectangle = 2L +2W Yen meter

20

32. An angle in a right triangle has measure
$$\alpha$$
. If $\sin \alpha = \frac{24}{25}$ and $\tan \alpha = \frac{24}{7}$, then $\cos \alpha = ?$

$$-\sin \alpha = \frac{24}{25} \text{ and } \tan \alpha = \frac{24}{7}, \text{ then } \cos \alpha = ?$$
F. $\frac{7}{25}$

$$Cos = A = \frac{7}{11}$$

J.
$$\frac{7}{\sqrt{1,201}}$$
K. $\frac{25}{7}$

G.

H.

ACT-61B-SAMPLE

	2		\triangle	\triangle	\triangle	\triangle		<u></u>			2
3	3. Wi	hat is the dist d (8,10) in th	ance, in coor e standard (x	rdinate units,	, between (6 te plane?	,4) Dis	tance	OUR FIGU	JRING HE	RE.	
1	A. B. C. D.		$O = \bigvee$	(y2:	$-4)^{2}$	+(-	x2-x3-6)	1)2			40
3	4. On the	e of the follo standard (x	owing is the sy) coordinat	slope of the l	line graphed	$\frac{in}{50}$ $\frac{5}{6}$	opt c	of lin	165 i	n	
	F.	-8 $-\frac{1}{2}$	y 6 4	T /	Si	lope.	$= \frac{\Delta Y}{\Delta X}$	= 4-	-0 -8	= 4 =	-1-
	н. J. К.	2	2 -4 -2 0 -2 -2 -2	2 4 6 IV ause	8 10 x line 9		better ery st hru t	780			-
3		formula for th	ne area of a tr	apezoid is A	$= \frac{1}{2}(b_1 + b_2)$)h, S	OVING	1			
		ere A is the ses, and h is			A CONTRACTOR OF THE PARTY OF TH	ine	riable	11 .	1	ms	711
		b_1 , and b_2 , h	.,			16	1	theres			
	Α.	$\frac{1}{2}A - b_1 - b$	$\frac{1}{2}$	IN te	rms	07		eans		ving	for
		$2A-b_1-b_2$	01	VE V.	AVI A	6/4 0	and C	ompa.	ring	them	,
		$\frac{2A-b_1}{b_2}$	to				This			M. Com	
	D.	$\frac{\frac{1}{2}A}{b_1+b_2}$	Z */	$4 = \frac{1}{2}$	b, + bz	-* h	* 2	· 	>h	$=\frac{\angle A}{b}$	
1	▶ E.	$\frac{2A}{b_1+b_2} \qquad 0$	1+62		2		b ₁ +	- 62		6,+	b2
3	var	nich of the f ying directly ersely as the	as the squar	e of the tem	perature T a		aria-			. /	
	F.	$P = \frac{10V}{T^2}$	Di	rect	Vari	iatic	N/15	Slik	46 =	SOPE	
	G.	$P = \frac{10T^2}{V}$	Ta	Nonc	0 1/.	. 4	y=	KX	Vat	towns	
1		$P = \frac{10}{T^2 V}$		0			n is	uke	1001	equ	cation
		$P = 10T^2V$		this			一文				
	K.	$P = 10 \left(\frac{T}{V}\right)^2$	y K	Par	4 10=						
A	CT-61B-S	AMPLE	1)	10	1	21		GO ON	TO THE N	IEXT PAGI	

37. Which of the following is NOT a factor of $z^5 - 16z$? A. $z^2 - 1$ DO YOUR FIGURING HERE.
A C. z+2 Factoring 25-162 becomes 2(24-16)
D. z E. z-2 Difference of → Z (Z²-4)(Z²+4) = Z(Z-2)(Z+Z)(Z²+2)(Z²
Standard (x,y) coordinate plane below? SOHCAHTOA and
Pythagorean Triples
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
J. $\frac{13}{5}$ $\frac{12}{5}$ $\frac{12}{5}$ $\frac{12}{5}$ $\frac{13}{5}$ $\frac{12}{5}$ $\frac{13}{5}$ $\frac{13}{$
K. $\frac{13}{5}$
39. In the figure below, \overline{AE} and \overline{BD} intersect at C , and the measure of $\angle E$ is twice the measure of $\angle D$. The measure of $\angle A$ is 40°, and the measure of $\angle B$ is 32°. What is the measure of $\angle E$?
(- 7D A Equals 180 - (40+32) or 100
Because of Vertical L's LDCE Equals 108°
A. 24° B. 40° Set up Equation
B. 40° C. 48° D. 72° E. 108° $D + 2D + 108 = 180$ $D = 72$ $D = 24$
40. In the figure below, the measure of $\angle BAC$ is greater than the measure of $\angle DAC$ and $AB = AD$. Which of the following statements must be true?
A Geometry
A B TAC= itself
) A / / / / / / / / / / / / / / / / / /
1 12000
E. AB>BC D Given this, BC Must
G. BC < DC H. BC = DC J. BC > DC K. AB + BC = AC De greater than DC
IMAGINE AB MOVING
Courter clockwise, what happens to BC.
be of

41. In a math course, a student scored 100 on one test, 97 on another test, and 88 on each of the other tests. The student's test average for the course, where each test is weighted equally, is exactly 91. What is the total number of math tests that the student has taken in the course? A. 3 B. 5 C. 7 D. 15 E. Cannot be determined from the given information You Can try the Choice Ruichly DO YOUR FIGURING HERE. ### PURA 46 911 = 100+97+88 911 = 197 - 176 + 88	3M
42. An equation of a particular circle is $(x-3)^2 + y^2 = 10$. What are the coordinates of this circle's center and what is the length, in coordinate units, of this circle's radius? Center Radius Circle = $(x-h)^2 + (y-k)^2 = V^2 + (h,k)$ Center Radius Circle = $(x-h)^2 + (y-k)^2 = V^2 + (h,k)$	
F. (-3,0) $\sqrt{10}$ G. (-3,0) $\sqrt{5}$ H. (3,0) $\sqrt{10}$ J. (3,0) $\sqrt{5}$ K. (3,0) $\sqrt{10}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{3}$ $$	iu!
43. The point $(3,-4)$ is the midpoint of the line segment in the standard (x,y) coordinate plane joining the point $(8,-11)$ and the point (a,b) . Which of the following is (a,b) ? A. $(-2,3)$ B. $(-2,-19)$ C. $(2,-3)$ D. $(2.5,-3.5)$ E. $(5.5,-7.5)$ And $-4=\frac{11+9}{2}$ $-4=\frac{3}{2}$ $-4=\frac{3}{2}$ $-4=\frac{3}{2}$	
44. If $AC = 10$ feet and $BD = 12$ feet in the rhombus $ABCD$ Area of Rhombus A	
A Area $\angle F = 0$, $d_1 = d_1 = d_2 = d_1 = d_1 = d_1 = d_2 $	12

48. Which of the following graphs best represents the absolute value of the balloon's velocity, in meters per hour, between 8:00 A.M. and 2:00 P.M.?

DO YOUR FIGURING HERE.

(Note: Ignore acceleration and deceleration.)

F. of the velocity of the velo

Velocity is speed or rate

G. apsolute value of the velocity of the veloc

"Which of the following

H. apsolute value of the velocity of the veloc

Test and SET What

Makes Sense with orig

graph on previous Page

Every ONE EXIEPT F

J. apsolute value of the velocity of the veloc

doesn't reflect The correct Distance in the Altitude graph

K. apsolute value of the velocity of the veloc

as Altitude-graph

49. Which of the following phrases best describes the balloon's motion between 10:30 A.M. and 12:00 noon?

- A. Descended, and then ascended more quickly
- B. Descended, and then ascended more slowly
- C. Stayed at the same altitude
- D. Ascended, and then descended more quickly
- E. Ascended, and then descended more slowly

Review each out and makes determine which out makes the MOST Sense

Quad

50. In the standard (x,y) coordinate plane shown below, $\triangle ABC$ has vertices at A(-2,3), B(-2,1), and C(-1,1). A translation is performed on $\triangle ABC$, and the image of each point P with coordinates (x,y) is the point P' with coordinates (x',y') where x'=x+3 and y'=y-2. The vertices of $\triangle A'B'C'$ are in which quadrant(s)?

DO YOUR FIGURING HERE. Translations in X4 Coordinate Plant

If the x's slide to the right (+3), then The figure would be in If they more down (-2), they would move

- Quadrant I only G. Quadrant II only
- H. Quadrant III only J. Quadrants I and IV only
- K. Quadrants II and III only
- 51. In the figure below, $\overline{AB} \cong \overline{CD}$. Fred wants to apply the

Side-Angle-Side (SAS) congruence theorem to prove

that $\triangle ABD \cong \triangle CDB$. Which of the following congru-

Geometry (rare)

- A. $\angle A \cong \angle C$
- B. $\angle 3 \cong \angle 4$ **∠**2 ≅ **∠**4
- **D.** ∠2 ≅ ∠3
- **E.** ∠1 ≅ ∠4

DB equals Itself For SAS, the sides are AB=> DC and DB & DB. Need included angles 1 and 4

52. A camper at Site C sends a distress signal. The signal is received by both Ranger Station A and Ranger Station B. As shown below, Ranger Station A is 6 miles directly west of Ranger Station B. Ranger Station A is directly south of Site C. The entire region is flat and level. On a map, the angle formed at Ranger Station B by drawing straight lines from Ranger Station B to Site C and to Ranger Station A measures 57°. About how many miles away from Site C is the closer of the 2 ranger stations?

Trigonometry The closer of the two from Site C is Station A Tan 57 = 1, tan 57 =

$$\mathbf{F.} \quad \frac{6}{\sin 57^{\circ}}$$

- H. 6 sin 57°
- J. 6 cos 57°
- → K. 6 tan 57°

Z A A A INTEGER	alities \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
60. When $-3 \le x \le 4$ and $-1 \le y \le 2$, what is the least possible value for $x = y$?	DO YOUR FIGURING HERE.
F5 G3 Yau Can Si	Value and work
H2 J. 3 K. 5	Value and work
back ward	
	END OF TEST 2
STOP! DO	NOT TURN THE PAGE UNTIL TOLD TO DO SO.
	DO NOT RETURN TO THE PREVIOUS TEST.
-5 would	work with
γ	c-4
3 7	and yes -3-2=-5
	- 01 1
	Xis-3
1 1	amost est 4 is 6
and the	greatest 4 is C
3	7 - 5

Test 2: Mathematics—Scoring Key

			Subscore Area*					Subscore Area*	•
	Key	EA	AG	GT		Key	EA	AG	GT
1.	Α				31.	В	1		
2.	Н				. 32.	F			
3.	В				33.	C			
4.	G				34.	G			
5.	D				35.	E		A COLUMN	
6.	H				36.	G			
7.	В				37.	A			
8.	J				38.	F			
9.	D				39.	C			
10.	Н			A CONTRACTOR	. 40.	J			
11.	Α				41.	C			
12.	Н				42.	Н			
13.	E		HENCE !		43.	Α			
14.	F	1			44.	J			
15.	E				45.	В			
16.	Н				46.	Н			
17.	E				47.	D			
18.	G				48.	F			
19.	E				49.	E			
20.	G				50.	J			
21.	D				51.	E		N. P.W. Bright	
22.	G				52.	K			
23.	Α				53.	E			
24.	F				54.	G			
25.	D				55.	E			
26.	J				56.	Н			
27.	D				57.	E			
28.	G				58.	J			
29.	E				59.	D			
30.	G				60.	F			

Number Correct (Raw Score) for:	
Pre-Alg./Elem. Alg. (EA) Subscore Area	
Inter. Alg./Coord. Geo. (AG) Subscore Area	(24)
Plane Geo./Trig. (GT) Subscore Area	(18)
P	(18)
Total Number Correct for Math Test (EA + AG + GT)	(60)

* EA = Pre-Algebra/Elementary Algebra AG = Intermediate Algebra/Coordinate Geometry GT = Plane Geometry/Trigonometry

0861B